

Efficacy and Safety of a Twice-Yearly Regimen of Lenacapavir, Teropavimab, and Zinlirvimab: Phase 2 Week 52 Results

Onyema Ogbuagu^{1*}, James McMahon², Aditya Gaur³, Susan J. Little⁴, Edwin DeJesus⁵, Princy Kumar⁶, David Wheeler⁷, Helmut Albrecht⁸, Anson Wurapa⁹, Hui Liu¹⁰, Nan Zhang¹⁰, Kwad Mponponsuo¹⁰, Sean E. Collins¹⁰, Joseph Eron¹¹

¹Yale School of Medicine, New Haven, CT, USA; ²The Alfred Hospital and Monash University, Melbourne, Australia; ³St. Jude Children's Research Hospital, Memphis, TN, USA; ⁴University of California San Diego, CA, USA; ⁵Orlando Immunology Center, Orlando, FL, USA; ⁶Georgetown University, Washington, DC, USA; ⁷Infectious Diseases Physicians, Inc., Annandale, VA, USA; ⁸Prisma Health/University of South Carolina, Columbia, SC, USA; ⁹Infectious Disease Specialists of Atlanta, Decatur, GA, USA; ¹⁰Gilead Sciences, Inc., Foster City, CA, USA; ¹¹University of North Carolina, Chapel Hill, NC, USA.

*Presenting author

Disclosures

Onyema Ogbuagu has served as an advisor/consultant to Gilead Sciences, Inc. and ViiV, and has received honoraria from Gilead Sciences, Inc.

James McMahon has received grants/contract payment made to their institution from Gilead Sciences, Inc., ViiV, and Merck.

Aditya Gaur has received grant/research support from Gilead Sciences, Inc. and ViiV, and has served as an advisor for ViiV.

Susan Little has received grants/contract payments to their institution from Gilead Sciences, Inc.

Edwin DeJesus reports grant/contract payments from ViiV, Merck, AbbVie, TeroTechnology/Taimed Biologic, and Gilead Sciences, Inc.

Princy Kumar reports grants/contract to their institution from ViiV /GSK, Gilead Sciences, Inc., Merck and Theratechnologies; has received consulting fees from ViiV/GSK, Gilead Sciences, Inc., and Merck; has participated on a Data Safety Monitoring Board/advisory board for ViiV/GSK, Gilead Sciences, Inc., and Merck; and has stock/stock options for Merck, Pfizer, Gilead Sciences, Inc., Johnson & Johnson, GSK and Moderna.

David Wheeler has received grant/research support from Gilead Sciences, Inc., Janssen, and AstraZeneca.

Helmut Albrecht has received grants/contract payment made to their institution from Gilead Sciences, Inc., Merck, and ViiV.

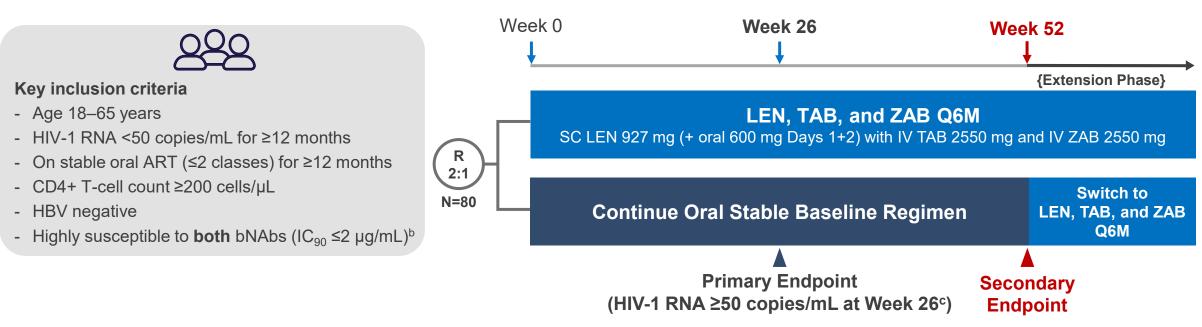
Anson Wurapa has received contract payments from Gilead Sciences, Inc., ViiV, and Merck, and honoraria from Gilead Sciences, Inc.

Joseph Eron has received grants/contract payment made to their institution from Gilead Sciences, Inc., has served as an advisor/consultant to Gilead Sciences, Inc., ViiV, Merck, and AbbVie, and has participated in Data Safety Monitoring Boards and Advisory Boards for Invivyd and Taimed.

Kwad Mponponsuo, Sean Collins, Nan Zhang, and Hui Liu are all employees and shareholders of Gilead Sciences, Inc.

This study was funded by Gilead Sciences, Inc. All authors contributed to and approved the presentation; medical writing support was provided by Sophie Roberts of Ashfield MedComms (Macclesfield, UK), an Inizio company, and was funded by Gilead Sciences, Inc.

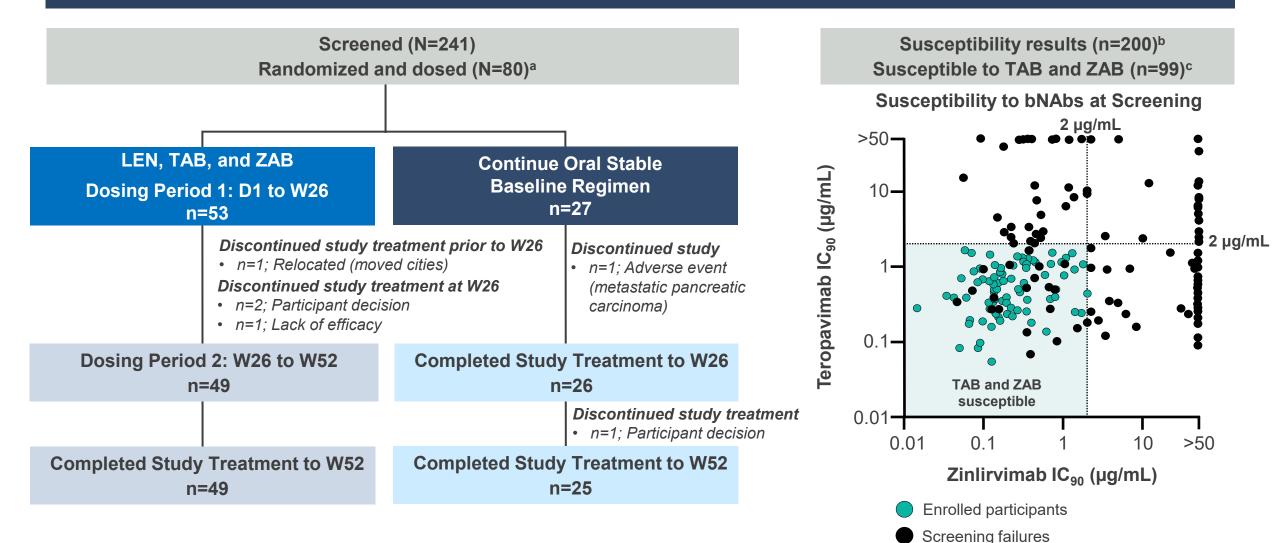
Background


ART, antiretroviral therapy; bNAb, broadly neutralizing antibody; LEN, lenacapavir; TAB, teropavimab; ZAB, zinlirvimab.

- Antiretroviral therapy (ART) with less frequent dosing may offer advantages over daily oral
 options for some people with HIV-1, such as improved adherence and reduced pill burden¹
- Lenacapavir (LEN), the first-in-class HIV-1 capsid inhibitor, is approved for the treatment of multidrug-resistant HIV-1 in the UK, EU, US, Canada, and other countries, and can be administered subcutaneously twice yearly^{2–5}
- Teropavimab (TAB; 3BNC117-LS) and zinlirvimab (ZAB; 10-1074-LS), broadly neutralizing antibodies (bNAbs) that target the HIV envelope, can also be dosed twice yearly⁶
 - TAB targets the CD4-binding site of gp120 while ZAB targets the V3 glycan on the HIV-1 envelope
- In this Phase 2 study (NCT05729568) of the combination of LEN, TAB, and ZAB, 96% of participants maintained virologic suppression at Week 26⁷

Objective: To evaluate the 1-year efficacy and safety of switching to twice-yearly LEN, TAB, and ZAB versus continuing stable baseline daily oral ART

Phase 2 Study Design

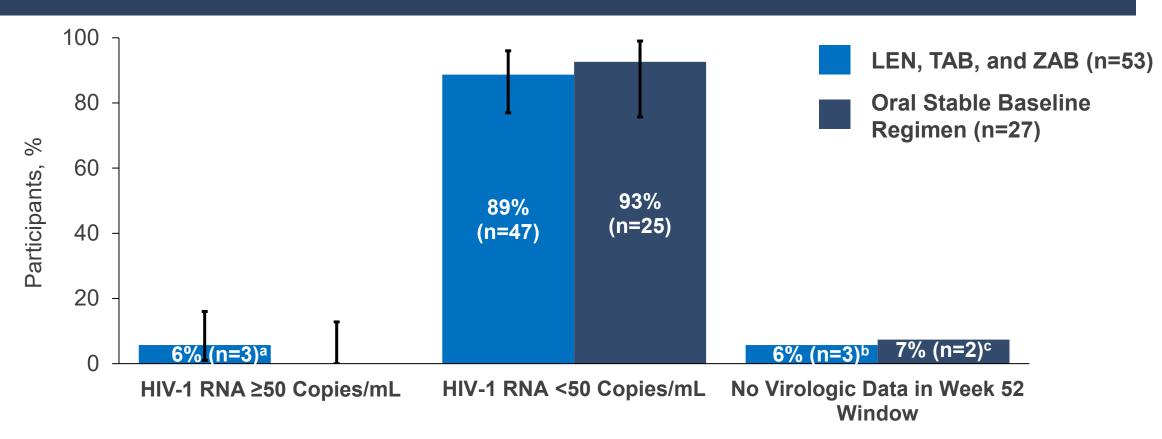

Randomised, open-label, active-controlled, multicenter study^a

Week 52 Secondary Outcomes:

- HIV-1 RNA <50 copies/mL and ≥50 copies/mL^c
- Change from baseline in CD4+ T-cell count; safety (adverse events);
 pharmacokinetics of LEN, TAB, and ZAB; anti-drug antibodies (ADAs)

Participant Disposition and bNAb Susceptibility

^a84 participants met all eligibility criteria; 1 eligible but not randomized (participant decision); 3 randomized but not dosed (participant decision). ^b41 with assay failure; ^cTAB only: 47 (24%); ZAB only: 31 (16%); neither: 23 (12%).

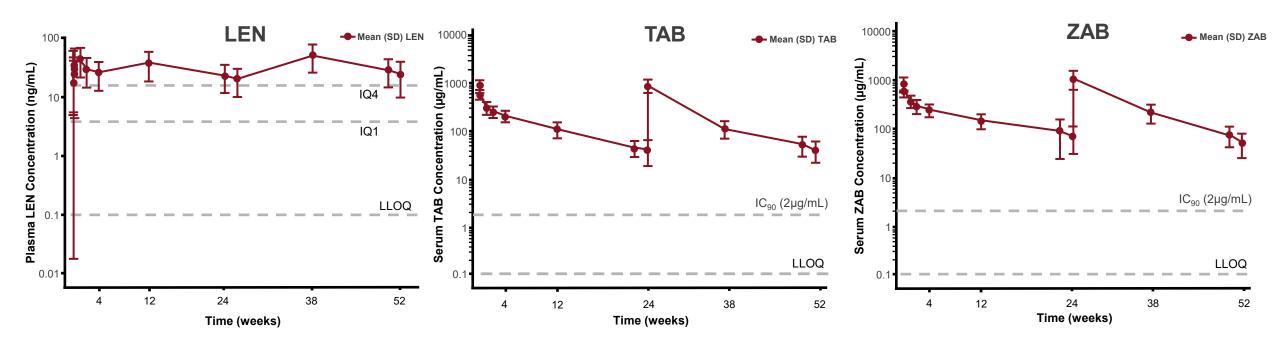

Baseline Characteristics

	LEN, TAB, and ZAB n=53	Oral Stable Baseline Regimen n=27	
Median (range) age, years	46 (20–65)	57 (28–65)	
Female sex at birth, n (%)	8 (15)	4 (15)	
Race, n (%)			
Asian	1 (2)	1 (2)	
Black	21 (40)	8 (30)	
White	28 (53)	16 (59)	
Other	3 (6)	2 (7)	
Hispanic or Latine ethnicity, n (%)	13 (25)	7 (26)	
Median (range) weight, kg	93 (56–156)	87 (58–157)	
Median (range) BMI, kg/m ²	29.2 (20.4–48.9)	29.2 (19.1–51.4)	
BMI ≥30 kg/m², n (%)	23 (43)	9 (33)	
Median (IQR) CD4+ T-cell count, cells/μL	710 (552–895)	738 (583–869)	
Median (IQR) duration of all prior ARVs (years) ^a	12.2 (7.5–16.5)	2 (7.5–16.5) 16.4 (10.4–23.4)	
Baseline ARV containing INSTI + NRTI, n (%)	42 (79)	23 (85)	
USA region, ^b n (%)	48 (91)	19 (70)	

^aThese durations are estimates based on self-reported data.

^bEx-USA regions include Australia, Canada, and Puerto Rico. Participants were enrolled across 34 sites.

Week 52 Virologic Outcomes (FDA Snapshot Algorithm)



- Median (IQR) CD4+ T-cell count increased from baseline at Week 52:
 - +32 (-43 to 119) cells/µl in the LEN, TAB, and ZAB group
 - +38 (–30 to 146) cells/µl in the oral stable baseline regimen group

an=2 with HIV-1 RNA ≥50 copies/mL in W52 window, n=1 with HIV-1 RNA ≥50 copies/mL discontinued study drug due to lack of efficacy at W26. All 3 participants restarted standard first-line oral ART (B/F/TAF) and resuppressed in follow-up. bn=3 discontinued study drug due to participant decision with last HIV-1 RNA <50 copies/mL. cn=1 discontinued study drug due to participant decision and n=1 discontinued study drug due to adverse event, both with last HIV-1 RNA <50 copies/mL.

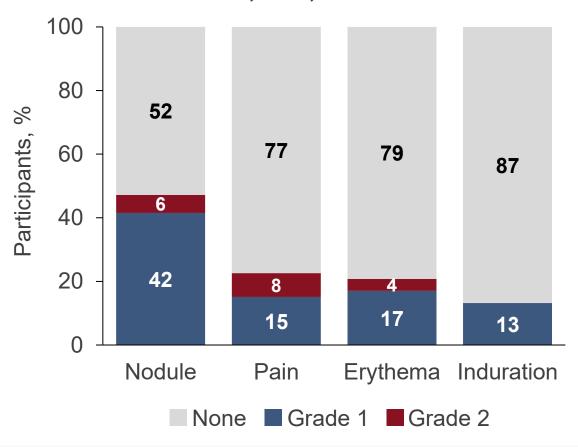
Pharmacokinetics and Anti-Drug Antibodies

Mean concentrations of LEN, TAB, and ZAB were maintained through Week 52

- Treatment-emergent ADAs against: TAB, n=6 (11%); ZAB, n=9 (17%)
- PK profiles of participants with and without ADAs were similar; ADAs were not associated with adverse events or virologic rebound
- Further PK and ADA data will be presented at IDWeek 2025 (Poster P-1248)

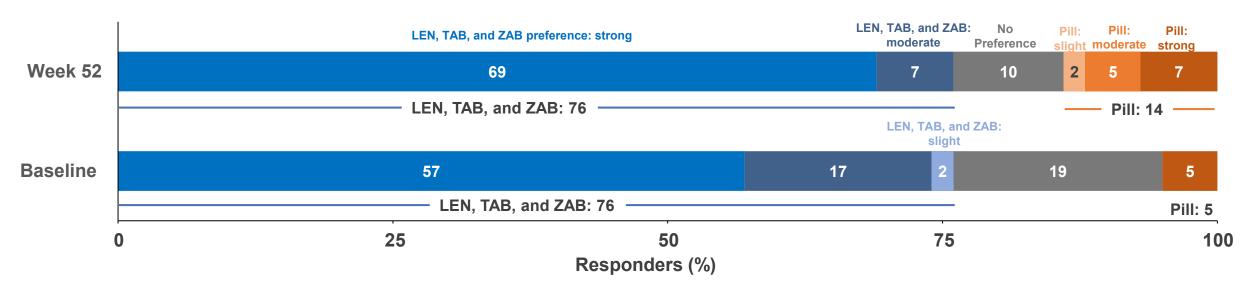
Safety Overview (Excluding ISRs related to SC LEN)

	LEN, TAB, and ZAB	Oral Stable Baseline Regimen
Participants, n (%)	n=53	n=27
AEs	40 (76) ^a	21 (78)
Grade ≥3	4 (8) ^b	2 (7)
Treatment-related AEs	5 (9) ^c	0
Grade ≥3	0	0
Serious AEs	1 (2) ^d	1 (4) ^e
AEs leading to study drug discontinuation	0	1 (4) ^e
AEs in ≥5% of participants ^f		
Diarrhea	7 (13)	1 (4)
Upper respiratory tract infection	5 (9)	0
COVID-19	3 (6)	2 (7)
Viral upper respiratory tract infection	3 (6)	1 (4)
Sinusitis	3 (6)	1 (4)
Constipation	3 (6)	0
Nausea	3 (6)	1 (4)
Hemorrhoids	3 (6)	1 (4)
Cough	3 (6)	0

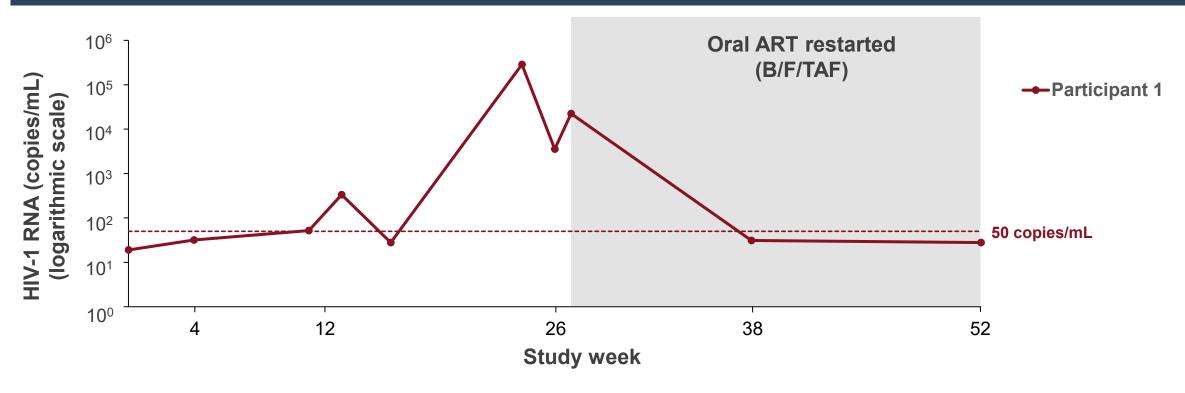

Safety data through the Week 52 data cut (up to last participant Week 52 visit) were included. ^a47 participants (89%) including ISRs. ^bPerineal abscess, acute pyelonephritis, scrotal abscess, ureteritis, abnormal weight loss, glycosuria, and nephrolithiasis in four participants. ^cLacrimation increased, nausea, device dislocation, abnormal dreams, and insomnia in 5 participants. ³⁷ participants (70%) including ISRs. ^dPerineal abscess and scrotal abscess in one participant. ^eMetastatic pancreatic carcinoma in one participant. ^{f≥5}% of participants in either group, excluding ISRs. **AE,** adverse event; **ISR,** injection site reaction; **LEN,** lenacapavir; **SC**, subcutaneous; **TAB,** teropavimab; **ZAB,** zinlirvimab.

Injection Site Reactions and Infusion-Related Reactions

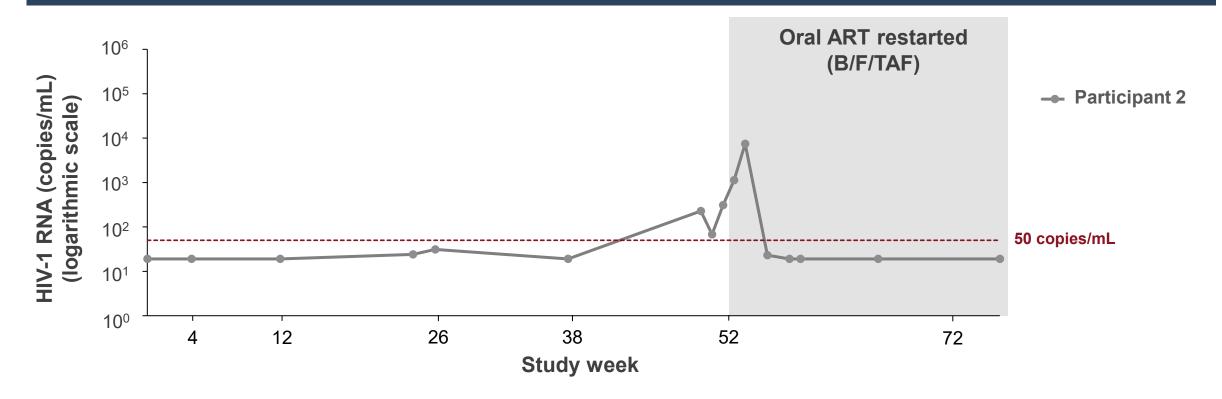
- The most common AEs were Grade 1 or 2 ISRs related to SC LEN in 36 (68%) participants^a
 - Grade 1: 30 (57%) participants
 - Grade 2: 6 (11%) participants
- No participants discontinued due to ISRs


There were no infusion-related reactions to TAB or ZAB

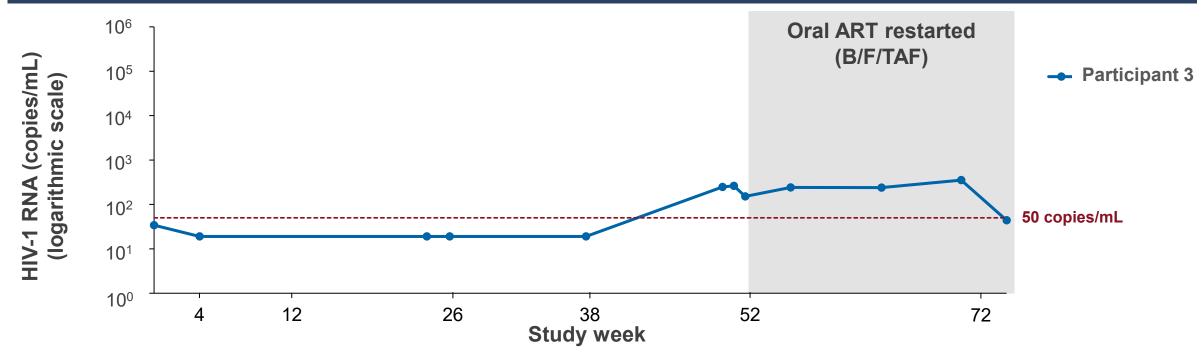
Injection Site Reactions Related to SC LEN Occurring in ≥10% of Participants Receiving LEN, TAB, and ZAB


Patient-Reported Outcomes

HIV Treatment Preference Questionnaire (HIVTPQ) (Twice-Yearly LEN, TAB, and ZAB vs Daily Oral Pill)


- Overall, 42/53 participants completed the HIVTPQ at baseline, Week 26, and Week 52
- At Week 52, 32/42 (76%) participants preferred LEN, TAB, and ZAB (strong, n=29; moderate, n=3) over daily oral ART
- At Week 52, 38/42 (90%) participants indicated twice-yearly LEN, TAB, and ZAB would be easier to adhere to compared to daily oral ART

Participants with Virologic Rebound: Participant 1


- Week 12: Upper respiratory tract infection and steroid usage
- Week 24: Developed resistance to LEN and lost susceptibility to ZAB^a
- No ADAs to TAB or ZAB

Participants with Virologic Rebound: Participant 2

- Week 50: Lost susceptibility to ZAB (genotype only)
- No ADAs to TAB or ZAB

Participants with Virologic Rebound: Participant 3

- Low level viremia persisted post-ART restart, with peak viral load at Week 71 (353 copies/mL)
- No evidence of HIV-1 resistance mutations in rebounding virus; post-hoc analysis of HIV-1 RNA showed identical sequences
- No resistance detected
- First ADAs to TAB detected at Week 26 and persistent at Weeks 38 and 52; ADAs to ZAB first detected at Week 12 and persistent to Week 26
 - ADAs did not impact PK

Assessment of Virologic Rebound Through Week 52

 The three participants with confirmed virologic rebound were male, had HIV-1 sub-type B, had antibody trough concentrations mostly in the lowest quartile, and confirmed virologic failure late in the dosing interval

	Participant 1	Participant 2	Participant 3
Baseline BMI, kg/m ²	30.8	38.3	36.3
Baseline weight, kg	109	143	118
Time of rebound	Week 24	Week 50	Week 50
LEN trough PK	4 th percentile	13 th percentile	66 th percentile
TAB trough PK	25 th percentile	18 th percentile	12 th percentile
ZAB trough PK	37 th percentile	18 th percentile	6 th percentile
Baseline susceptibility TAB IC ₉₀ , μg/mL	1.53	0.08	0.36
Baseline susceptibility ZAB IC ₉₀ , μg/mL	0.72	0.09	0.17

- Weight is a clinically significant covariate that affects antibody exposure, as identified in preliminary TAB and ZAB PopPK models
 - All three virologic rebound participants weighed >100kg, with lower bNAb exposures
- Data are not sufficient to establish a statistical association between TAB and ZAB exposures and risk
 of virologic rebound

Conclusions

- Overall, 89% of participants receiving LEN, TAB, and ZAB remained suppressed at Week 52 by FDA Snapshot Algorithm
 - Efficacy of LEN, TAB, and ZAB was similar to standard-of-care daily oral ART
 - Three participants met confirmed virologic rebound criteria; two had emergent resistance (one each to LEN and ZAB) and one had low level viremia that persisted on oral therapy with no emergent resistance
 - All three participants suppressed on oral therapy
 - The relationship between viral rebound and PK is being explored
- Through Week 52, LEN, TAB, and ZAB was well tolerated
- The majority of participants having experienced both modalities of treatment preferred LEN, TAB, and ZAB over daily oral ART through Week 52
- These data support further evaluation of LEN, TAB, and ZAB in Phase 3 studies
- This long-acting combination regimen has potential as the first complete twice-yearly combination treatment for people with HIV-1

Acknowledgements

- We extend our thanks to the participants and their families
- We would like to thank all study personnel and participating investigators: Helmut Albrecht,
 Ogechika Alozie, David Baker, Mark Bloch, Cynthia Brinson, Jason Brunetta, Thomas Campbell,
 Paul Cook, Gordon B. Crofoot, Frederick A. Cruickshank, Edwin DeJesus, Joseph Eron,
 Aditya Gaur, Linda Gorgos, Robert Grossberg, Shawn Hassler, Princy Kumar, Susan J. Little,
 Mehri McKellar, James McMahon, Anthony Mills, Javier O. Morales-Ramirez, Onyema Ogbuagu,
 Godson Oguchi, Olayemi Osiyemi, David J. Prelutsky, Moti N. Ramgopal, Peter J. Ruane,
 Michael Sension, Gary Ian Sinclair, David A. Wheeler, Kimberly Workowski, Anson Kwame Wurapa,
 Cornelius VanDam
- We would like to thank Laurie VanderVeen for contributing to helpful discussions
- Correspondence: Onyema Ogbuagu, onyema.ogbuagu@yale.edu

Copies of this presentation obtained through QR (Quick Response) and/or text key codes are for personal use only and may not be reproduced without written permission of the authors.

