20th EUROPEAN AIDS CONFERENCE

15–18 October 2025 | Paris, France

Mapping patterns of resistance to 2nd-gen INSTI in clinical practice: results from the ROSETTA-registry

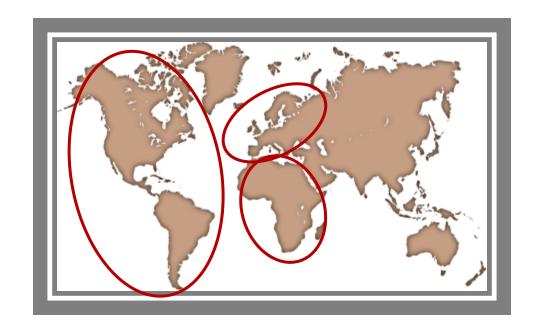
Mafalda N.S. Miranda, PharmD, PhD m.nunesdasilvamiranda@umcutrecht.nl 16th of October

Disclosures

Potential conflict of interests	
Relations that could be relevant for the meeting	Investigator initiated grant Gilead Sciences paid to the UMCU
Sponsorship	No
Payment or other remuneration	No
Shareholder	No
Other relation	No

Rosetta Registry

Aim


Registration of cases with virological failure to 2nd –generation INSTI from clinical practices globally

Improve insight into the associated clinical features and resistance-mutation patterns

Study design

Case registry – Started in September 2023

Rosetta Registry

Inclusion criteria

- On ART for at least 6 months without evidence of current interruption
- Virological failure on 2nd-gen INSTI based ART in Europe, Africa or America's *
- Associated clinical data of current ART and historical records of previous INSTI exposure
- Integrase (IN) sequences/samples drawn at time of failure to perform resistance testing

*Virological failure: 2 consecutive pVL> 50 copies/mL or a single pVL > 200 copies/mL

2nd Interim Analysis

1 Data selection

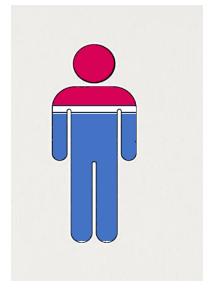
220 cases met the inclusion criteria for the 2nd interim analysis

1 sample could not be amplified

3 sequences excluded because of APOBEC hypermutation

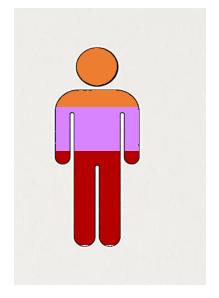
Methodology

Subtype classification: COMET version 2.4

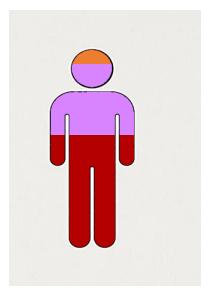

Definition of resistance:

predicted low/intermediate/high level resistance to any 2nd-gen INSTI
 (Scores ≥ 15 from Stanford HIVDB Scores vs 9.6)

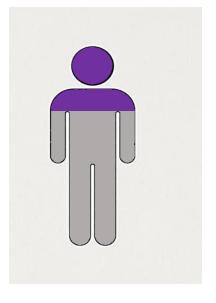
Statistical analysis: RStudio vs 2023.09.1+494


Socio-demographic Characteristics

Gender (n=220)


- Female (31.4%)
- o Transgender (0.5%)
- Male (68.2%)

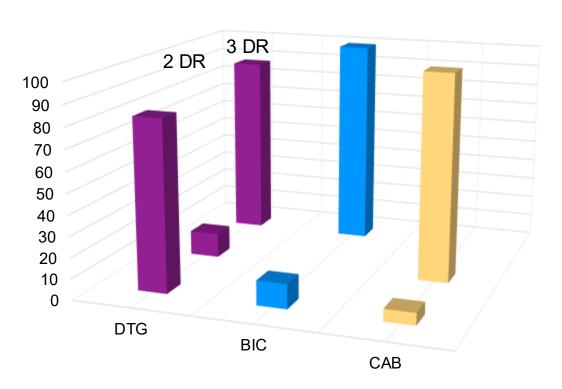
Region of Origin (n=192)


- Africa (21.4%)
- America (24.5%)
- Europe (40.9%)

Region of follow-up (n=220)

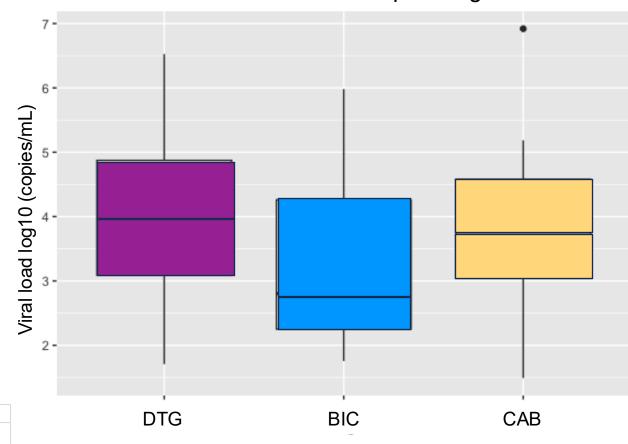
- Africa (12.7%)
- America (23.2%)
- Europe (64.1%)

Disease Stage (n=123)



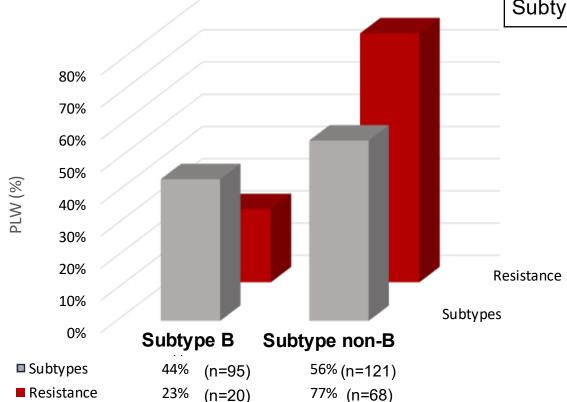
- AIDS (29.3%)
- No AIDS (71.7%)

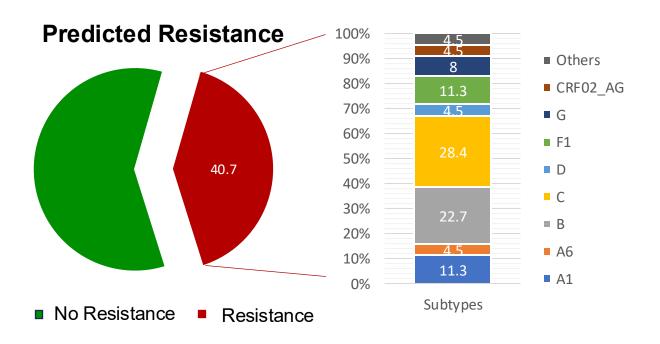
Median age at failure: 42 years (IQR:34-51)


Characteristics of the study population

2nd-gen INSTI regimen at time of failure

	DTG (n=181)	BIC (n=26)	CAB (n=13)
All DR	82.3	11.8	5.9
with 2 DR	11.9	0	100
with 3 DR	88.1	100	0


Viral load at failure per drug



Resistance to 2nd-gen INSTI

Resistance detected in 88 individuals (40.7%)

Resistance to 2nd-gen INSTI

Clinical Features	Prevalence of 2nd-gen INSTI Resistance	p-value
Clinical Stage, N = 121		
No AIDS vs AIDS	25.9% (22/85) vs (36.1% 13/36)	=0.258
Exposure before 2nd-gen INSTI, N = 216*		
Naïve vs experienced (BIC and DTG only, n=204)	15.4% (10/65) vs 51.1% (71/139)	<0.001
No 1st-gen exposure vs 1st-gen exposure	35.1% (60/171) vs 62.2% (28/45)	=0.002
DTG Regimen, N = 181		
Two drugs vs three drugs, N = 159	47.4% (9/19) vs 34.3% (48/140)	=0.264
Two drugs vs three drugs in naïve, N = 56	50% (1/2) vs 9.3% (5/54)	=0.068
VL at time of failure, N = 216		
≤1000 cp/mL vs >1000 cp/mL	38.6% (22/57) vs 41.5% (66/159)	=0.701
Time to failure on 2nd-gen INSTI, N =216*		
≤1 year vs > 1 year	31.1% (42/135) vs 59% (46/78)	<0.001

^{*}confirmed in multivariate

Specific mutational patterns to 2nd-gen INSTI

For xTC-containing regimens (n=148) more common with INSTI resistance 77% (46/60) than without 9% (8/88) (p<0.001)

INSTI-mutations

R263K (n=21)

Less common following previous 1st-gen INSTI exposure (2/28 vs 19/60 **p=0.012**) This observation was confirmed after correction for subtype B vs non-B (**p=0.043**)

G118R (n=14)

Less common following previous 1st-gen INSTI exposure (1/28 vs 13/60 **p=0.031**) Likely a function of subtype as it was **not observed** in B at 1st time of failure (**p=0.027**)

G140S (n=10)

The genetic pathway towards this mutation **is easier for** subtype B* Predominantly detected in PWH with subtype B (40%) vs non-B (2.9%) **p=0.019**

Summary/Conclusions

- Three continent wide collection of virological failure and resistance cases to all 2nd-gen INSTIs
- We observe differences in resistance patterns based on previous ART exposure and subtypes
- As we enlarge our dataset we expect to gain more insights on these intertangled relationships

Implications:

This data has implications for both individual follow-up regimens and for the development of new INSTI regimens

Acknowledgments

Coordination team

Annemarie Wensing
Jeroen van Kampen
Dimitrios Paraskevis
Carole Seguin-Deveaux
Fatima Bikhezar
Laurence Guilorit

Scientific team

Thibault Mesplede
Ana Abecasis
Annelies Verbon
Berend van Welzen
Karol Serwin
Ferdinand de Wit
Monique Nijhuis
Joseph Fokam
Suzanne McCluskey
Ricardo Diaz

Gilead Sciences for supporting this investigator initiative

Collaborators

Ivailo Alexiev
Josip Begovac
Jose L. Blanco
Michael Böhm

Charlotte Charpentier

Tommaso Clemente

Pablo Ferrer

Federico Garcia

Perpétua Gomes

Itzchak Levy

Rolf Kaiser

Evangelia G. Kostaki

Leontios Kostrikis

Justyna Kowalska

Niklaus Labhardt

Josep M Llibre

Nadine Lübke

Maja Lunar

Gkikas Magiorkinis

Maria Mazzitelli

Kaja Mielczak

Orna Mor

Jeremy Nel

Simona Paraschiv

Milosz Parczewski

Murat Sayan

Georgios Siakallis

Alessandra Simões Bassini

Kim Steegen

Karolien Stoffels

Nadine Tschumi

Gabriele Turel

Margarida Veloso

20th EUROPEAN AIDS CONFERENCE

15–18 October 2025 | Paris, France

Thank you for your attention

Mafalda N.S. Miranda, PharmD, PhD m.nunesdasilvamiranda@umcutrecht.nl 16th of October

